-
The 5 Algorithms for Efficient Deep Learning Inference on Small Devices | by James Le | Heartbeat (fritz.ai)
-
https://www.sciencedirect.com/science/article/pii/S2095809919306356
-
https://www.analyticsinsight.net/embedded-ai-and-machine-learning-adding-new-advancements-in-tech-space/
-
https://reader.elsevier.com/reader/sd/pii/S2351978920321922?token=94518A6EFD7B40644E99D21DEF73B4EA6E3901FB2F47C28CC46430E5887F00E26444C69152B665B2C17A971975182C49cadlab.cs.ucla.edu/~jaywang/papers/fpga16-cnn.pdf
-
https://www.youtube.com/watch?v=eZdOkDtYMoohttps://arxiv.org/pdf/1803.08995.pdf
-
https://www.semanticscholar.org/paper/Iterative-Low-Rank-Approximation-for-CNN-Kholiavchenko/5d05f66896eb237671dc9bb71fb3c34c708013c9
-
https://heartbeat.fritz.ai/research-guide-model-distillation-techniques-for-deep-learning-4a100801c0eb
-
https://arxiv.org/pdf/1503.02531.pdf
-
https://arxiv.org/pdf/1910.10699.pdf
-
https://arxiv.org/pdf/1902.03393.pdf
-
https://arxiv.org/pdf/1910.01348.pdf
-
https://arxiv.org/pdf/1910.01108.pdf
-
https://arxiv.org/pdf/1607.04381.pdf
-
https://heartbeat.fritz.ai/the-2-types-of-hardware-architectures-for-efficient-training-and-inference-of-deep-neural-networks-a034850e26dd
-
https://arxiv.org/pdf/1901.02067.pdf
-
https://siliconangle.com/2019/05/26/no-cloud-required-ais-future-edge/
-
https://www.theregister.com/2017/02/21/processor_tla_cpu_gpu_tpu_fpga_asic_and_now_ipu/?utm_content=buffer143eb&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer